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Green’s-function approach to quantum confinement
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~Received 5 November 1997!

We present a rigorous means of computing the electronic properties of a confined system by perturbing the
electronic properties of an unconfined, bulk system. Our approach focuses on the Green’s function of the
confined system. We explain why it is preferable to consider the confined Green’s function rather than the
confined energy eigenfunctions, and an expression for the change in the Green’s function produced by quantum
confinement is derived. Finally, we shift our focus to the eigenfunctions and derive approximate results for a
spherical nanocrystal with a Green’s function methodology.@S0163-1829~98!01515-X#
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I. INTRODUCTION

It makes intuitive sense that the physical properties o
sufficiently large, confined system should be similar to
physical properties of the corresponding unconfined, b
system. However, it is not apparent how to express this s
larity quantitatively. The eigenfunctions of the two system
are qualitatively different: the eigenfunctions of a confin
system are standing waves, while the natural eigenfunct
of a bulk crystal, calculated using translational symmetr
are running Bloch waves. Nevertheless, the measure
properties of the two systems must be related. In this pa
we present a formal description of quantum confinem
physics that clarifies this relationship. We treat the confin
surface as a source of translational symmetry breaking.
analysis provides a quantitative description of how trans
tional symmetry breaking perturbs the properties of the bu

This treatment relies on the use of Green’s functions
Sec. II, we explain why it is preferable to focus on Gree
functions rather than energy eigenfunctions when explor
the physical consequences of broken symmetry. In Sec.
we show how to express the Green’s function of a confin
system as the Green’s function of the bulk system plu
perturbation. A series expansion for the perturbation is
rived in Sec. IV. We consider the impact of translation
symmetry breaking on the measureable properties of the
fined system in Sec. V. In Sec. VI, we shift our attenti
from the Green’s function of the confined system to the c
fined wave functions, and we compute approximate eigen
ergies and eigenfunctions for a spherical nanocrystal.

II. BROKEN SYMMETRY AND GREEN’S FUNCTIONS

In quantum mechanics, symmetries in the Hamilton
lead to degeneracies in the energy eigenfunctions. Dege
ate eigenfunctions can be arbitrarily superposed with
jeopardizing their status as eigenfunctions. Thus, in sit
tions of high symmetry, there is a lot of flexibility in choos
ing how to express the eigenfunctions. When we introduc
small perturbation into a highly symmetric situation, typ
cally degeneracy is lifted, and the flexibility is lost. A maj
redefinition of the eigenfunctions can result from the pert
bation, as is described by degenerate perturbation theor
570163-1829/98/57~16!/9515~6!/$15.00
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Although this major redefinition can occur, if the pertu
bation is small the physical properties of the system gen
ally should only change slightly. This fact is physically o
vious, but it is obscured if we pay excessive attention to
energy eigenfunctions. It is therefore useful to work with
quantity characterizing a system that does not suffer suc
radical transformation under a small perturbation. One s
quantity is the Green’s function. If the eigenfunctions of
system arecn(rW) and the eigenenergies areEn , the Green’s
function is defined by

G~rW,rW8,E!5Sncn~rW !cn* ~rW8!FQ~EF2En!

E2En2 ih
1

Q~En2EF!

E2En1 ih G ,
~1!

where, throughout this paper,h is an infinitesimal positive
quantity. In this equation,EF denotes the Fermi energy an
Q is the Heaviside function. The infinitesimal imagina
terms in the factor in brackets appear in such a way as
agree with the definition of the single-particle Green’s fun
tion in many-body theory.1 It is clear from expression~1!
that the Green’s function is unaltered by a mere redefinit
of the degenerate states of a given energy. On phys
grounds, it is reasonable that the Green’s function should
unaltered by an inessential redefinition because the ti
dependent Green’s function is the propagator that advan
states in time.2

The Dyson equation1 specifies how an unperturbe
Green’s functionGu is perturbed toGp under a potential
V(rW):

Gp~rW,rW8,E!5Gu~rW,rW8,E!

1E d3rW9Gu~rW,rW9,E!V~rW9!Gp~rW9,rW8,E!. ~2!

No separate degenerate perturbation theory is required
the Green’s function as is required for the energy eigenfu
tions. This is because of the insensitivity of the Green’s fu
tion to the redefinition of degenerate states: the Green’s fu
tion changes in a tidy way under a perturbation, regardles
how much degeneracy exists in the unperturbed system.
9515 © 1998 The American Physical Society



an
ry

n
su
e
nd
e
ic
ic
th
rls
o

ul
is

th
nc
ap
p

fe
th

y
o

th
Th
ec

i
ex
h

e
tis

h

w
e

ion,

we
n’s
en’s
nt

at

-
ba-

-

he
n-
to

n at
by

n

-
ts

ion

9516 57ARI MIZEL AND MARVIN L. COHEN
result of this tidiness, the Green’s function is an ideal qu
tity for describing many physical effects of a symmet
breaking perturbation.

III. BROKEN TRANSLATIONAL SYMMETRY
AND GREEN’S FUNCTIONS

In the case of quantum confinement, the translatio
symmetry of the system is broken by the presence of a
face. Degenerate Bloch eigenfunctions of the unconfin
bulk system are superposed into qualitatively different sta
ing wave eigenfunctions. To clarify the relationship betwe
the physical properties of a confined system and the phys
properties of an unconfined system, we ignore the rad
change in the wave functions and focus instead on
Green’s function. This was the direction taken by Peie
who employed the Green’s function to justify the use
periodic boundary conditions.3

Let us refer to the Green’s function of an unconfined, b
system asGb . To describe the condition of confinement, it
natural to look for some perturbation potential,V, that breaks
translational symmetry. The potential would determine
confined Green’s function from the unconfined Green’s fu
tion through the Dyson equation. Unfortunately, such an
proach proves to be problematic. The confined system’s
tential and the unconfined system’s potential dif
everywhere outside the confined system; the integral in
Dyson equation diverges.

It turns out to be more fruitful to take another tact b
pursuing a boundary value approach, adapting the work
electromagnetic waves in a cavity of Ref. 4. To describe
approach, we first consider the case of bulk electrons.
electronic eigenfunctions of a bulk system satisfy the eff
tive one-particle Schro¨dinger equation

Hbc~rW !5@2¹21Vb~rW !#c~rW !5Ec~rW !, ~3!

with periodic boundary conditions. Here, we adopt atom
units. The solution to this equation can be obtained by
ploiting the translational symmetries of the bulk system. T
eigenfunctions take the form of Bloch waves,cn,kW , labeled
by a band indexn and a crystal momentumkW . The eigenen-
ergies are given by a band-structure functionEn(kW ). In the
bulk crystal, electrons occupy eigenstates up to a Fermi
ergyEF . The energy-dependent bulk Green’s function sa
fies the equation

~Hb2E!Gb~rW,rW8,E!52d~rW2rW8!. ~4!

In terms of the Bloch eigenfunctions of the system, t
Green’s function takes the form

Gb~rW,rW8,E!5Sn,kWcn,kW~rW !cn,kW
* ~rW8!FQ„EF2En~kW !…

E2En~kW !2 ih

1
Q„En~kW !2EF…

E2En~kW !1 ih
G . ~5!

To describe the Green’s function of a confined system,
assume that the Hamiltonian in the interior of the confin
system is similar to that of the bulk system. Thus, forrW
-
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inside the confined system, the confined Green’s funct
Gc(rW,rW8,E), should satisfy Eq.~4! just as the bulk Green’s
function does. To describe the condition of confinement,
simply impose boundary conditions on the confined Gree
function at the surface. Let us express the confined Gre
function as the bulk Green’s function plus a confineme
perturbation

Gc~rW,rW8,E!5Gb~rW,rW8,E!1DG~rW,rW8,E!. ~6!

Since bothGb andGc satisfy Eq.~4!, the perturbation obeys
the homogeneous equation

~Hb2E!DG~rW,rW8,E!50. ~7!

If we demand that the confined Green’s function vanish
the surface, Eq.~6! requires that

DG~rWs ,rW8,E!52Gb~rWs ,rW8,E! ~8!

for surface pointsrWs . We have shown that translational sym
metry breaking changes the Green’s function by a pertur
tion. The perturbation satisfies differential Eq.~7! with
boundary condition~8!. Now our task is to solve this equa
tion.

Before undertaking this problem, we point out that t
boundary condition~8! captures the essential physics of co
finement. However, it is possible to extend the formalism
include more subtle effects such as charge redistributio
the surface of a confined system. This can be achieved
perturbing the many-body Green’s functio
iGb(rW,t,rW8,t8)[^CbuT$c(rW,t)c(rW8,t8)%uCb& and using the
fact that it satisfies the differential equation1

~E1¹22Ub~rW !!Gb~rW,rW8,E!

5d~rW2rW8!1E d3rW9S* ~rW,rW9,E;Gb!Gb~rW9,rW8,E!. ~9!

IV. FORMAL SOLUTION FOR CONFINEMENT
GREEN’S FUNCTION

We derive a solution to Eq.~7! by continuing to adapt the
work of Ref. 4. We write the perturbationDG in the form of
a layer potential

DG~rW,rW8,E!5E d2aW
]

]na
Gb~rW,aW ,E!m~aW ,rW8,E! ~10!

wherem(aW ,rW8,E) is an unknown source density. In this two
dimensional integral,aW is a vector that ranges over all poin
on the surface, andna denotes the normal to the surface ataW .
Written in this integral form,DG(rW,rW8,E) will satisfy Eq.~7!

for rW inside the surface, regardless ofm.5

We therefore need only impose the boundary condit
~8!. We require that
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57 9517GREEN’S-FUNCTION APPROACH TO QUANTUM CONFINEMENT
lim
rW→rWs

E d2aW
]

]na
Gb~rW,aW ,E!m~aW ,rW8,E!52Gb~rWs ,rW8,E!,

~11!

whererWs is a point on the surface. We cannot simply serW

equal torWs in the integral on the left hand side of this equ
tion, becauseGb(rWs ,aW ,E) is poorly behaved asaW→rWs . To
evaluate the limit, we first show that

Gb~rW,rW8,E!52
1

4purW2rW8u
1H~rW,rW8,E!, ~12!

whereH(rW,rW8,E) is finite at rW5rW8.
We begin with the differential Eq.~4!. Writing Gb in the

form ~12!, it follows thatH satisfies the equation

~Hb2E!H~rW,rW8,E!5@Vb~rW !2E#
1

4purW2rW8u
. ~13!

Using the definition~5! of the Green’s function, we can writ
H in the form

H~rW,rW8,E!52E drW9Gb~rW,rW9,E!@Vb~rW9!2E#
1

4purW92rW8u
~14!

5E drW9
1

4purW2rW9u
@Vb~rW9!2E#

1

4purW92rW8u

2E drW9H~rW,rW9,E!@Vb~rW9!2E#
1

4purW92rW8u

[I~rW,rW8,E!1J~rW,rW8,E!.

By inspecting its definition, we can confirm thatI(rW,rW8,E) is
finite at rW5rW8. To show thatJ(rW,rW8,E) is also well behaved
at rW5rW8, we note that it satisfies the differential equation

~Hb2E!J~rW,rW8,E!52@Vb~rW !2E#I~rW,rW8,E!. ~15!

SinceI is finite atrW5rW8, genericallyJ should be too. Thus
H5I1J should be well behaved atrW5rW8, as asserted.

Now that we have characterized the singularity inGb , we
appeal to the identity5

lim
z→02

]

]z

21

4pA~x21y21z2!
52

1

2
d~x!d~y!. ~16!

From this identity and from Eq.~12!, it follows that limit
~11! is

2
1

2
m~rWs ,rW8,E!1E d2aW

]

]na
Gb~rWs ,aW ,E!m~aW ,rW8,E!

52Gb~rWs ,rW8,E! ~17!

where the first term on the left hand side arises becaus
the d function. This is a ‘‘Dyson’’ type equation form,
of

which provides a formal solution forDG via Eq. ~10!. Iter-
ating Eq.~17!, and recalling definition~6!, we find that

DG~rW,rW8,E!52E d2aW
]Gb~rW,aW ,E!

]na
Gb~aW ,rW8,E!

122E d2aW d2bW
]Gb~rW,aW ,E!

]na

]Gb~aW ,bW ,E!

]nb

3Gb~bW ,rW8,E!

1••• . ~18!

This is a formal expression for the change in the Gree
function arising from translational symmetry breaking.
may be regarded as analogous to the usual iterated D
equation, but with an ‘‘electron-boundary’’ interaction o
curring only at the surface.

V. PHYSICAL EFFECTS OF TRANSLATIONAL
SYMMETRY BREAKING

Using DG, any electronic property that is expressable
terms of the Green’s function can be written for the confin
system as the corresponding bulk property plus a pertu
tion. We illustrate this with two examples.

The charge density in a confined structure is given by1

rc~rW !52E dE

2p i
eiEhGc~rW,rW,E!. ~19!

Using Eq.~6!, we can write this as

rc~rW !52E dE

2p i
eiEh@Gb~rW,rW,E!1DG~rW,rW,E!#

5rb~rW !1Dr~rW !. ~20!

On physical grounds, we expect thatDr(rW) should be small
deep inside a confined system and should grow in magnit
near the surface.

For optical properties, the imaginary part of the dielect
constant is a quantity of interest. In terms of energy eig
functions, it is given by6

ec
~2!~v!5S 2pe

mv D 21

V
S f ,i z^ f u«̂•pW u i & z2d~Ef2Ei2v!,

~21!

where f denotes a final confined eigenfunction,i denotes an
initial confined eigenfunction,«̂ is a photon polarization vec
tor, andpW is the momentum operator, andV is the nanocrys-
tal volume. In terms of the Green’s function, we can wr
ec

(2)(v) in the form

ec
~2!~v!5ReF S c

v D 21

V E d3rWd3rW8dEidEf «̂•pWGc~rW,rW8,Ei !

3 «̂•pW 8Gc~rW,rW8,Ef !d~Ef2Ei2v!G . ~22!

Here, pW 8 is a momentum operator that differentiates w
respect torW8. The spatial integrals proceed over the inter
of the confined system only. Using Eqs.~6! and ~22!, it is
straightforward to arrive at an expression of the form
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9518 57ARI MIZEL AND MARVIN L. COHEN
ec
~2!~v!5eb

~2!~v!1De~2!~v!, ~23!

whereeb
(2) is the bulk function andDe (2) gives the change

due to confinement effects. In a semiconductor nanocry
for instance, we expect the termDe (2)(v) to be negative just
above the energy of the bulk gap. This will suppress abso
tion and increase the size of the gap, which is a typical qu
tum confinement effect.

VI. CONFINED WAVE FUNCTIONS
AND EIGENENERGIES

So far in this paper, we have stressed the utility of
Green’s function over the eigenfunctions in describing
effects of quantum confinement. There are instances, h
ever, in which it is desirable to determine the eigenfunctio
of a confined structure. Even for this purpose, a Gree
function approach is of use. The wave functions of a c
fined structure can be regarded as a superposition of
Bloch eigenfunctions that cancel at the surface. In previ
papers, we have successfully constructed this superpos
by first forming a basis of Wannier functions.7 Here, we
determine the proper superposition of Bloch eigenfuncti
using the bulk Green’s function.

The electronic wave functions of the confined system s
isfy Eq. ~3! with the requirement thatc vanish on the sur-
face. We multiply Eq.~3! by Gb , multiply Eq. ~4! by c, and
then subtract. Integrating the difference over the interior
the confined system, we obtain

c~rW !5E @c~rW8!¹2Gb~rW,rW8,E!2Gb~rW,rW8,E!¹2c~rW8!#d3rW8,

~24!

where rW is a point in the interior of the confined system
Using the divergence theorem, and the fact thatc must van-
al,

p-
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ish on the surface of the confined system, we arrive at

c~rW !52E Gb~rW,rW8,E!
]c

]n8
d2rW85E Gb~rW,rW8,E!m~rW8!d2rW8,

~25!

where the integral is taken over the surface. In this equat
the factorm(rW8) should be regarded as an unknown surfa
density producing the wave function on the interior. For on
special values ofE—the eigenenergies of the confine
system—is it possible to find a nonzerom that gives rise to a
nonzero wave functionc that manages to vanish on the su
face. At these special values ofE, once the properm has
been found, Eq.~25! gives the eigenfunctionc.

It appears from Eq.~5! that Gb(rW,rW8,E) depends upon
eigenstates with all energies. However, for a bulk system,
sum overkW states in the equation can be turned into an in
gral over energies and an integral over states of cons
energy. If E is among the eigenenergies ofHb , then the
integrand has poles atEn(kW )5E6 ih. The integral over en-
ergies can then be contracted to integrals aroundE6h in the
complex plane. Hence, despite appearances, theGb(rW,rW8,E)
involves only states of energyE. Thus, the integral~25! is
really just a way of expressingc as a superposition of bulk
states of energyE.

Equation ~25! gives an efficient way to determine th
eigenstates of a confined system because it is a t
dimensional integral equation that replaces the usual th
dimensional Schrodinger equation in three dimensions
numerical solution of Eq.~25! is currently being pursued fo
real systems. However, it is also possible to derive an
proximate solution to Eq.~25! analytically for a spherical
nanocrystal.

We begin by computing an approximation to the bu
Green’s function~5!. Let us write the Bloch waves in Eq.~5!
as a superposition of localized Wannier functions:8
Gb~rW,rW8,E!5
1

N
Sn,kWSRW eikW•RW an~rW2RW !SRW 8e

2 ikW•RW 8an* ~rW82RW 8!FQ„EF2En~kW !…

E2En~kW !2 ih
1

Q„En~kW !2EF…

E2En~kW !1 ih
G

5
V

N
Sn,RW ,RW 8an~rW2RW !an* ~rW2RW 8!E

BZ

d3k

~2p!3
eikW•~RW 2RW 8!FQ~EF2En~kW !!

E2En~kW !2 ih
1

Q~En~kW !2EF!

E2En~kW !1 ih
G

'E
BZ

d3k

~2p!3
eikW•~rW2rW8!FQ„EF2En~ ukW u!…

E2En~ ukW u!2 ih
1

Q„En~ ukW u!2EF…

E2En~ ukW u!1 ih
G

'F S 2k

dEn~k!/dkD2S e2 ikurW2rW8u

4purW2rW8u
Q„EF2ED 2

eikurW2rW8u

4purW2rW8u
Q~E2EF!D G

En~k!5E

. ~26!
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57 9519GREEN’S-FUNCTION APPROACH TO QUANTUM CONFINEMENT
In this equation,N refers to the number of unit cells in th
bulk crystal andV refers to the volume of the bulk crystal. I
the third line, the Wannier functions are assumed to be p
fectly localized. The bands are also assumed to be sph
cally symmetrical, so thatEn(kW )5En(ukW u). In the final line, it
is assumed that the surfaceE5En(ukW u) is a sphere in the
Brillouin zone satisfied by a single band only. We can n
insert our expression forGb into Eq. ~25!. The resulting in-
tegral equation forc is actually closely related to the differ
ential equation obtained in the effective ma
approximation.9 In both cases, one assumes that the Wan
functions are localized and solves for what turns out to b
sort of envelope function.

With our approximation forGb , the solution to Eq.~25!
can be found by inspection for a spherical nanocrystal.
each bandn, we guess thatm can take the form

m~rW8!5Yl ,m~ r̂ 8! ~27!

for any choice ofl andm. The corresponding wave functio
is found to involve spherical Bessel function
c(rW); j l(klr )Yl ,m( r̂ ). If the value ofkl satisfiesj l(kla)50,
wherea is the radius of the nanocrystal, thenc vanishes at
the nanocrystal surface as required. The energy ofc is
En(ukW u5kl), where, as we recall, all bands have been
sumed to be spherically symmetrical.

In particular, the highest occupied electronic state and
lowest unoccupied electronic state are found to be prop
tional to j 0@(p/a)r #. The energies of these states are the
fore Ev(ukW u5 p/a) andEc(ukW u5 p/a), respectively, wherev
refers to the valence band of the bulk andc refers to the
conduction band. The resulting energy g
Eg(a)5Ec(ukW u5p/a)2Ev(ukW u5p/a) is plotted versusa in
Fig. 1 for InAs nanocrystals. In this plot, we took the sphe
cally symmetrized band functionEn(ukW u) to be the actual
band functionEn(kW ) evaluated a distanceukW u along theX
direction. Then, we repeated the calculation choosing thL
direction instead. Both calculations are shown, with a co
parison to an effective mass computation9 and to experimen-
tal data.10 Our calculations are in better agreement with e
periment than the effective mass treatment. This is beca
we assume that the bands are independent of the directio
kW , but we make no assumptions as to their dependence o
magnitude ofkW . In the effective mass calculation, one a
sumes that the bands are not only spherically symmetric
also parabolic.

VII. CONCLUSION

We have drawn a quantitative connection between
Green’s function of a confined system, like a nanocrys
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and the Green’s function of a bulk system. We presente
formal expression for the perturbation in the Green’s fun
tion due to quantum confinement effects, and then con
ered the measureable consequences of this perturbation
approximate expression for the confined eigenfunctions
eigenenergies was derived as well. Applications of this f
malism to real systems are in progress. The developm
presented here could find use in the study of confin
phonons and photons as well as electrons.
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FIG. 1. Energy gaps of InAs nanocrystals. Green’s function c
culations show better agreement with experiment than effec
mass calculation. See text for explanation of difference betw
two Green’s function calculations.
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